What is a polycarboxylate superplasticizer

In 2023, the China Greater Bay Area Concrete Industry High-Quality Development Seminar and the Expo on Concrete Equipment and Technology will take place at the Guangzhou Canton Fair Complex. Guangzhou Canton Fair Complex. The conference's theme will be "Gathering Talents and Gathering Power, Talking about Smart Concrete," co-sponsored by the Guangzhou Concrete Industry Association and Guangdong Hongwei International Exhibition, responsible persons from the Guangzhou Municipal Bureau of Housing and Urban-rural Development, Municipal Bulk Cement and Building Energy Conservation Management Center as well as Concrete Industry Experts as well as representatives from downstream and upstream companies participated at the show.


A concrete core sample 200 millimeters in diameter and an overall long 25.3 meters was successfully removed from the RCC gravity dam in the Fengshan Reservoir Project in Qiannan Buyi and Miao Autonomous Prefecture, Guizhou Province, China. The length of the core sample is the longest among water conservancy projects within Guizhou Province, marking that the quality of construction and technology of the dam in the Fengshan Reservoir Project has reached the top standard.

The concrete pouring for the first warehouse at the Qishi Junction of the Pinglu Canal in China has started, which signifies that the three main points of operation for the Pinglu Canal have entered a new phase of building the main structure. This Pinglu Canal is the backbone of the land-sea channel that runs through the west. When it is finished and open to navigators, the canal will let the world's narrowest, most cost-effective, and most efficient ocean channel between Guangxi and Southwest China.


1. What is a polycarboxylate superplasticizer?

Polycarboxylate superplasticizer is used primarily in cement concrete to act as a dispersant. It is composed of polymers containing sulfonic acid group (-SO3H) and carboxyl groups (-COOH) or derivatives of them and features high efficacy, environmental protection, and security.

The role of a polycarboxylate superplasticizer is primarily to disperse cement particles more evenly by adhering to concrete particles' surfaces, decreasing the amount of water needed, and increasing the strength and flexibility of concrete in the process. Compared to traditional water-based water-reducing agents, polycarboxylate agents have a higher water reduction rate and workability that can significantly enhance the performance and strength of concrete.


2. Superplasticizers that are applied to polycarboxylate.

Polycarboxylate Superplasticizer is commonly employed in cement concrete as a dispersant. Apart from its use in bridges, highways, tunnels, dams, high-rise buildings, and various other engineering areas, it is extensively utilized for grouting, pouring material such as anchoring, plugging the waterproof mortar K11 cement self-leveling, prefabricated components, special mortars, and various other construction materials. The applications of polycarboxylate superplasticizers in these areas will be described below.


1. Highway Engineering

In highway engineering, superplasticizers made of polycarboxylate are used to make high-performance highway concrete, which can increase durability and wear endurance on the surface of roads. The superplasticizer polycarboxylate's water-reducing capacity can significantly reduce water consumption in concrete, increase concrete's strength and flexibility, and make the road surface more dense, smoother, other, smoother, and more robust. The use of polycarboxylate superplasticizers in highway engineering will fulfill the highway construction's safety, green, and durability demands.



2. Bridge Engineering

When it comes to bridge design, superplasticizers made of polycarboxylate can be used to create bridge concrete with great strength and fluidity to increase bridges' bearing capacity and service life. The high water-reducing capacity and high workability of the polycarboxylate superplasticizers can significantly enhance Bridge concrete's performance, increase the uniformity and compactness of concrete, lessen the formation of bridge cracks, and consequently increase the longevity and safety of bridges.


3. Dam Project

When it comes to dam design, superplasticizers made of polycarboxylate are used to make high-strength, high-impermeability dam cement to increase the stability and security of the dam. Dams are an essential structure that stores water resources and manages water flow. It also has demanding requirements for the stability and safety that the dam. Utilizing polycarboxylate superplasticizers will increase the resistance and impermeability of concrete dams and effectively stop cracks and leakage, improving the dam's stability and security.

4. Tunnel Engineering

Tunnel engineering is a field where superplasticizers of polycarboxylate are used to make high-strength and high-impermeability tunnel concrete to increase the durability and stability of the tunnel. Tunnels are crucial underground structures used for transport and transport, so the requirements for durability and stability of tunnels are demanding. Using superplasticizers made from polycarboxylate will increase the durability and strength of tunnel concrete. It can effectively stop cracks and leaks, improving the tunnel's durability and stability.


5. High-rise buildings

In high-rise structures, Polycarboxylate superplasticizers are employed to make high-strength, highly-fluidity concrete for high-rise buildings to improve the safety and stability of structures. Because of the number of floors and the high building heights, their requirements for the strength of the structure and seismic performance of buildings are extremely significant. Utilizing polycarboxylate superplasticizers will enhance the strength and flexibility of high-rise concrete. It can significantly improve the strength of structures and the earthquake performance of structures, increasing the stability and security of structures.


6. Material pouring, grouting anchoring, plugging, and many more fields.

Apart from its use in engineering fields like dams, bridges, road tunnels, and high-rise structures, polycarboxylate superplasticizers are extensively used in construction materials, such as grouting agents and pouring materials, as well as anchoring and plugging. In these areas, the function of superplasticizers made from polycarboxylate is mostly by adsorption on the surfaces of cement particles, ensuring that the cement particles become more evenly distributed, thus reducing the quantity of water needed while at the same time improving the quality and consistency in the materials. These applications can fulfill various specific maintenance and construction requirements.


How do you make polycarboxylate superplasticizers?

Polycarboxylate superplasticizer is extensively utilized in cement concrete to act as a dispersant. The process of making it can be broken down into the steps below:


synthetic macromonomer

It is first necessary to create macromonomers. This is one of the primary processes in producing superplasticizers from polycarboxylate. The macromonomer is the primary component of the superplasticizer polycarboxylate that has polymer chains and polar company and can be adsorbed on the surfaces of cement particles to be superplasticizers. The most popular method used is free radicals' polymerization; the primary raw materials include unsaturated acids, such as methacrylic acid, acrylic acid, and maleic acid, and polymers like polypropylene glycol and polyethylene glycol. In the process of synthesis, it is crucial to regulate the temperature of the reaction and time, as well as the proportion of ingredients and other variables, to ensure the yield and quality of the macromonomer.


Polymerization

Once the macromonomer has been synthesized, a polymerization reaction is necessary. The polymerization reaction will react to the macromonomer using an oxidizing agent, such as ammonium persulfate, to create one with a higher level of polymerization. When performing this procedure, it is important to be aware of variables like reaction temperature and the time and quantity of oxidant used to ensure the polymerization process's efficiency as well as the quality of the product.


Post-processing

After the polymerization reaction is complete, post-treatment is needed. The post-treatment process involves dissolving the water and polymer to the ratio specified, adding acidic compounds for neutralization, adjusting the pH that the solution has, and then the addition of a protective colloid as well as other components to produce the final superplasticizer made of polycarboxylate. It is essential to regulate the amount of solution, the pH value, the kind and amount of protective colloid, and other variables to guarantee the quality and effectiveness of the solution.


4. Market prospects analysis of superplasticizer polycarboxylate

Due to the rapid growth in the field of construction, demand for polycarboxylate superplasticizers is growing, and the opportunities are vast. This article will examine the potential market for superplasticizers made from polycarboxylate based on the demand for market products, the policy environment, technological advancement, competition patterns, and the latest trends.

 

1. Market demand

As urbanization is accelerating and the continued development in infrastructure development, the demand for cement concrete has been growing each year, driving the demand for superplasticizers made of polycarboxylate. Polycarboxylate superplasticizer offers the benefits of an excellent water-reducing capacity, a high working capacity, a lower shrinkage rate, and so on. It can also significantly enhance the performance and durability of concrete. This is why it is extensively used in engineering areas such as bridges, roads, dams, tunnels, and high-rise structures. A lot of people use it. As the years progress, due to the constant advancement in infrastructure construction and the constant improvement in the quality of buildings, the need for polycarboxylate superplasticizers will continue to increase.


2. Policy environment

After the pandemic struck the world, various policies for improving the construction industry have been introduced, and across the globe are now recognizing the importance of infrastructure to spur economic development. One of them is the Chinese "Outline for the Modernization of the Construction Industry," which recommended that by 2030, the size of the construction industry would reach the target of around 20% of the nation's GDP. In the meantime, China's standards for environmental protection and conservation of energy are getting strict, and this provides an incentive for policymakers to develop superplasticizers that are made of polycarboxylate. Similar policies have been enacted across China to encourage and facilitate the manufacturing and utilization of polycarboxylate superplasticizers. Also boosting demand for superplasticizers made of polycarboxylate.


3. Development of technology

With the constant advancement of new technology and science, polycarboxylate superplasticizers' manufacturing technology and performance are constantly upgraded. Today, superplasticizers made by polycarboxylate manufacturers from around the globe are continuously pursuing technological research, development, and development and have introduced an array of brand new superplasticizers made of polycarboxylate including high water-reducing models and high slump retention varieties and those with low shrinkage. Wait. Introducing these products will further expand the scope of polycarboxylate superplasticizers' applications and market spaces.


4. Competitive landscape

The polycarboxylate superplasticizer market has developed into a remarkably competitive pattern of fierce competition. Certain well-known and well-known foreign construction materials firms are using the market for polycarboxylate superplasticizers and launching various items and products. However, smaller companies are also gaining entry into the market, and competition is growing increasingly fierce. In today's competitive market, businesses must continue to increase their service and product quality levels and cut production costs to gain market share.


5. Trends

Shortly, due to the constant growth within the industry of building the market for superplasticizers made from polycarboxylate will be able to present these trends.

High performance In developing engineering requirements, the performance of polycarboxylate superplasticizers has to be continually improved to meet the needs of high-performance concrete.

Protection of the environment: As environmental protection requirements and energy efficiency are becoming increasingly demanding, polycarboxylate superplasticizers must be more eco-friendly and energy-efficient.

Customization Diverse concrete fields and industries require different kinds of superplasticizers made of polycarboxylate to ensure that consumers will accept personalized polycarboxylate products.

Intelligent: With the advancement of technologies for information and intelligence, the next polycarboxylate superplasticizer will be more sophisticated and capable of achieving automatic production and intelligent use.

In the end, the potential for market share growth for superplasticizers made of polycarboxylate is huge. However, it is necessary for businesses to constantly improve the quality of their services and products to satisfy the changing demands of the market and to adapt to changes. In the meantime, continuous technological research, as well as innovation and advancement, are vital to meet the market's needs and predict future growth trends.

What is Boron carbide

Boron carburide is a high-performance carbon compound, which consists mainly of boron, carbon, and other elements. The chemical formula for B4C is B4C. It is used widely in the aerospace and military industries for its hardness and high melting point. The article will give a detailed description of the physical properties and chemical composition, preparation techniques, performance characterization and application fields.

Physical Properties

Boron carbide, a non-metallic inorganic material, has a mass density of 2.52g/cm3. It has a cubic lattice structure, a dense black crystal and a 0.243nm lattice constant. Boron carbide exhibits a low electrical conductivity of only 10-6S/m, and has excellent insulation. Its thermal conductivity (97W/m*K) is lower than metals, silicon and ceramics but higher than glass and other materials.

Chemical properties

Boron carbide exhibits chemical stability, and it is not reactive to acids or alkalis. B4C is reactive with H2O and O2. High temperatures can generate B2O3, CO etc. B4C has anti-oxidant and corrosion resistance. This makes it suitable for long term use in high temperature and corrosive environment.

Preparation method

Preparation methods for boron carbide The main methods are the arc melting and chemical vapour deposit method.

Methode de réduction du carbothermal

Carbon thermal reduction (CTR) is widely used to prepare boron carbide . This method generates carbon dioxide and boron carburide by melting boric black and carbon. The reaction formula is B2O3+3C + B4C+CO. The reaction temperature ranges from 1500 to 1700°C. This method has the advantage of being simple, low-cost, and easy to use. However, the boron carbide produced is not of high purity.

Arc melting method

In the arc melting process, graphite electrodes are heated and melted in a reaction between boric acid (or borax) to create boron carbide. The reaction formula is B2O3+3C + B4C. The reaction temperature ranges between 1800 and 2000°C. The boron-carbide prepared using this method is high in purity, with fine particles. However, the process is complicated and expensive.

Chemical vapour deposition method

Chemical vapour deposition uses the reaction of gaseous carbon black and borane at high temperature to create boron carburide. The reaction formula is B2H6+6C + B4C+6H2. The reaction temperature ranges between 1000-1200°C. The boron-carbide prepared using this method is high in purity, with superfine particles. However, the process is complicated and expensive.

Performance Characterization

The performance characterisation of boron carbide The term 'property' is used to describe mainly chemical, physical and mechanical characteristics.

Physical Property

Density, conductivity, and thermal conductivity are the main physical properties of Boron carbide. The density is 2.52g/cm3, conductivity 10-6S/m, and thermal conductivity 97W/m*K.

Chemical property

Boron carbide exhibits chemical stability, and it is not reactive to acids and alkalis. B4C is reactive with H2O and O2. High temperatures can generate B2O3, CO etc. B4C has anti-oxidant and corrosion resistance. This makes it suitable for use over a long period of time in high-temperature, corrosive environments.

Mechanical property

Boron carbide's high hardness, melting temperature, and heat transfer make it a popular material in many industries. Hardness of 3500kg/mm2, melting point 2450, and heat transfer rate 135W/m*K are among the characteristics that make boron carbide so popular in industries, military, aerospace, and other fields.

RBOSCHCO

RBOSCHCO, a global chemical material manufacturer and supplier with more than 12 years of experience, is known for its high-quality Nanomaterials. The company export to many countries, such as USA, Canada, Europe, UAE, South Africa, Tanzania,Kenya,Egypt,Nigeria,Cameroon,Uganda,Turkey,Mexico,Azerbaijan,Belgium,Cyprus,Czech Republic, Brazil, Chile, Argentina, Dubai, Japan, Korea, Vietnam, Thailand, Malaysia, Indonesia, Australia,Germany, France, Italy, Portugal etc. RBOSCHCO, a leading manufacturer of nanotechnology products, dominates the market. Our expert team offers solutions that can help industries improve their efficiency, create value and overcome various challenges. Send an email to Sales1@rboschco.com, if you're looking for Boron Carbide.

Why does properly poured concrete end up cracking

It is very easy to cause concrete cracking if the construction or maintenance are not done correctly. What are then the five main causes of cracking concrete?

1. The cement problem: Some workers in construction will add more water for a more fluid concrete. However, this will result in an increase in water-cement, resulting in a stronger concrete but not enough strength.

2. Transport and mixing issues: If mixing and transportation of concrete is prolonged, the water in the concrete could evaporate rapidly and cause rapid loss. concrete . This leads to a concrete that is weaker on the construction site, unable to meet construction specifications.

3. Construction speed

4. Maintenance is unreasonable. During the period of maintenance, if late watering isn't maintained, the result will be the Cracking phenomenon Later in the year, concrete will be used. Concrete is used in a variety of ways. Concrete Surface Watering You can water the concrete often to speed up the drying process. Concrete will shrink if it is not watered. Late cracking occurs when concrete strength is decreased.

5. Environmental factors: If the environment at the construction site is relatively dry and there is high temperature, wind, or both, then the concrete surface evaporation is accelerated. This results in cracking on the surface. Concrete constructions are most likely to crack in the winter or summer because of temperature variations.

Solution: Add anti-cracking agents, a variety inorganic materials composite anticracking agent can stop more than 80% cracking of foam concrete, add 2-3 kg per cubic meter.

What is Molybdenum disulfide MoS2 powder

Description of Molybdenum diulfide

Molybdenum sulfide (also known as MoS2) is a transition metal sulfide. It is dark grey, or black, solid. It has a layering crystal structure consisting of alternately arranged sulfur and molybdenum molecules. Molybdenum disulfide This material is excellent for its chemical and thermal resistance. It can be easily reacted to acids or bases. It is widely used in lubricants as well as additives and composite materials. As a great lubricant molybdenum diulfide offers a high load bearing capacity, low friction coefficient and good friction resistance. This is why it's widely used by the machinery, petrochemicals and automobile industries. Molybdenum diulfide, when used in harsh environments such as those with high temperatures, loads, or speeds, can act as a lubricant, reduce friction, and prolong the life expectancy of equipment. Moreover, molybdenum diulfide, when used as a fuel additive, can increase the fuel's combustion efficiency, and reduce pollutants. This additive plays a major role in protecting the environment, as it reduces air pollutants and improves energy efficiency.

Use of Molybdenum diulfide

Molybdenum diulfide is a compound that has outstanding chemical and physical properties. It is widely used in various areas. It has excellent chemical and mechanical properties. Following are some of the most important applications for molybdenum sulfide.

Lubricants - Molybdenum Disulfide, a lubricant that is excellent for its high load carrying capacity, good resistance to friction and low coefficient of friction. It has a high lubrication capacity in high-temperature, high-load and high-speed environments. This is why it's widely used in the machinery industry, petrochemicals and automobile manufacturing. The molybdenum-disulfide lubricant is also used to produce lubricating grease, lubricating oil and lubricating film.

Additive - Molybdenum Disulfide, when used in fuel, can enhance combustion efficiency and reduce emissions of pollutants. This additive plays a major role in protecting the environment by reducing air pollution and improving energy efficiency. As an additive, molybdenum can be added to rubber, plastics or coatings in order to improve their properties.

Composite materials. Molybdenum disulfide, when combined with rubber, resins, and other materials, can produce high-performance materials such as composite fibres, reinforced plastics. These composites offer excellent mechanical properties, corrosion resistance and can be used in many industries including automotive, electronics and aerospace.

Electronic industry Molybdenum disulfide It can be used for the electronic vapour deposition of thin MoS2 films. These thin films have excellent electrical conductivity, and transmit light well. This thin film material is suitable for optoelectronics applications, including solar cells and displays. The molybdenum-disulfide material can also be used to create transistors, Field-Effect Transistors and other electronic parts with high semiconductor performance and good electronic mobility.

Production Methods of Molybdenum Diulfide

Molybdenum diulfide, a compound with excellent chemical and physical properties, is used in numerous fields. The production process can be done in many ways, such as by synthesis, decomposition twice, flotation, or electroplating. Synthesis is the most commonly used method for producing molybdenum.

The synthesis is a way to make nano MoS2 using a molybdenum, tungsten source. This method can produce sulfides of high purity with fewer impurities. This method can produce sulfides to meet different functional needs, and so it has been given much attention. The steps in the synthesis include preparation of raw materials, chemical reactions, product separation, and purification.

In the stage of preparation for raw materials, you will need to prepare both a tungsten source or molybdenum and a sulfur. Tungsten, molybdenum or metal powders are the most common sources. While sulfur can be either elemental sulfur or sulfide. The purity, chemical properties, reaction conditions and other factors must be taken into consideration when selecting tungsten and molybdenum or sulfur sources.

In the chemical reactions stage, tungsten is Molybdenum Sources The molybdenum is disulfide produced in biochemical reactions that occur at high temperatures. The reaction temperature, the reaction time, and the reaction atmosphere are all part of the specific conditions. The temperature and reaction time of the reaction have an important effect on particle size and product purity. Reaction atmosphere has a similar impact.

Using the appropriate separation and purity methods, the molybdenum isulfide from the reaction product must be removed. Precipitation, filtration and distillation are some of the most common separation and purification processes. These methods can be used to separate the molybdenum diulfide from impurities and obtain molybdenum products with high purity.

Other methods are available to produce molybdenum sulfide. These include the double decomposition technique, the flotation method, and the electroplating method.

The compound decomposition technique produces molybdenum by reacting ammonium motate or ammonium tantate with ammoniumsulfide. The method is able to produce molybdenum sulfide even at lower temperatures. It can also prepare different molybdenum sulfide products, such as those with different particle sizes and morphologies.

Flotation is the process of extracting molybdenum diulfide by using organic agents and grinding tungsten, molybdenum or other sources with minerals like pyrite or Sphalerite. This method is able to produce molybdenum products with high purity, but requires more organic chemicals and a more complex production process.

Electroplating is the process of electroplating molybdenum on a metallic substrate. By using this method you can create molybdenum-disulfide films that have excellent properties. However, the chemicals and waste liquids in the electroplating will pollute the surrounding environment.

There are many different production methods, each with its own advantages and drawbacks. You should choose the best method for your needs. It is also important to consider environmental protection and safety during the production process.

Prospect Market for Molybdenum Diulfide

Molybdenum diulfide is an important chemical compound that has excellent chemical and physical characteristics. It's widely used in machinery, industry, electronics, aviation, and other fields. Demand for molybdenum diulfide has increased due to the growth of the global market and rapid development in high-tech industries. Molybdenum Disulfide Market has a wide range of prospects for the future.

Molybdenum Disulfide, as a highly-performance lubricant used in petrochemical, machinery manufacturing and automobile manufacturing is widely used. As industrialization continues and mechanical equipment becomes more precise and automated, the demand for lubricants will increase. Molybdenum diulfide has a high performance and is in great demand.

In the second place, molybdenum dioxide can be added to fuels as an additive that will improve combustion efficiency, reduce pollutants, reduce air pollution, and increase energy efficiency. As environmental awareness continues to grow and environmental policies are strengthened, the use of molybdenum dioxide as an additive that is environmentally friendly will continue to be promoted.

In composite materials, molybdenum diulfide, resins, rubbers, and other materials can be combined to produce high-performance materials such as reinforced fibres, composite plastics, etc. These composites have excellent mechanical and corrosion-resistant properties and are used in many fields, including automotive, aerospace, electronic and others. High-performance materials are in high demand due to the rapid growth and development of the high-tech industry. Molybdenum is one component and will see an increased demand.

The molybdenum-disulfide compound can be used to create new energy sources, including solar cells, energy storage batteries, and other energy technologies. As new energy technologies continue to be developed, demand for molybdenum will increase. This will provide new momentum for the development of the market.

Moreover, as the cost of production is reduced and the production process continues to improve, the price for molybdenum will continue to fall, which will further increase the demand on the market. In parallel, as environmental awareness increases and technological progress continues, new production technologies and processes will be introduced to the production process of molybdenum. This will further promote the growth of the molybdenum market.

According to the report from the market research company the global molybdenum market will continue rapid growth for the next several years with an annual rate of growth of over 10%. Globally, it is estimated that the molybdenum-disulfide industry will surpass $1 billion in 2025. China is a big producer and user of molybdenum, so the market will continue to grow rapidly.

Molybdenum disulfide Powder Price :

Many factors influence the price, such as the economic activity, the sentiment of the market and the unexpected event.

You can contact us for a quotation if you want to know the current price of Molybdenum diulfide powder.

Molybdenum disulfide Powder Supplier :

Technology Co. Ltd. has been supplying chemical materials for over 12 years.

Chemicals and nanomaterials of high quality, including silicon powder, graphite or nitride, zinc, sulfide (zinc sulfide), boron powder for 3D printing, etc.

Send us an email if you want to know more about our high-quality Molybdenum diulfide powder.

How is Niobium Carbide NbC powder produced?

Overview of Niobium Carbide NBC Powder

Niobium carbide (NBC and Nb2C) is a very hard refractory ceramic material used commercially for cutting tool tips. It is usually processed by sintering and is a commonly used additive in cemented carbide as a grain growth inhibitor. The appearance is brown-gray metal powder with purple luster and strong corrosion resistance.

How is Niobium Carbide NbC powder produced?

Niobium pentoxide reduction method:

Niobium carbide can be obtained by heating niobium oxide in a vacuum at 1800°C and adding coke.

In industry, niobium carbide is usually prepared from niobium pentoxide and carbon black as raw materials: niobium pentoxide and carbon black are firstly mixed with carbide raw materials in proportion, and put into a graphite crucible. Heating hydrogen or vacuum to 1600~1800℃, carbonization for the first time, then adding carbon black, mixing it, heating to 1800~1900℃ under hydrogen or vacuum, secondary carbonization, this is niobium carbide.

{xunruicms_img_title}

Application of Niobium Carbide NBC Powder

Niobium carbide NBC powder can partially replace tantalum carbide and is widely used in refractory high temperature materials and cemented carbide additives

As a cemented carbide additive, niobium carbide is a solid solution component of ternary and quaternary carbides, such as WC-NBC-C ternary system.

Niobium carbide NBC powder can also be used to make purple artificial gemstones.

Niobium carbide NBC powder price

The price of niobium carbide NBC powder will vary randomly with the production cost, transportation cost, international situation, exchange rate and market supply and demand of niobium carbide NBC powder. Tanki New Materials Co., Ltd. aims to help industries and chemical wholesalers find high-quality, low-cost nanomaterials and chemicals by providing a full range of customized services. If you are looking for Niobium Carbide NBC Powder, please feel free to send an inquiry for the latest price of Niobium Carbide NBC Powder.

Niobium Carbide NBC Powder Suppliers

As a global supplier of niobium carbide NBC powders, Tanki New Materials Co., Ltd. has extensive experience in the performance, application and cost-effective manufacturing of advanced technology and engineered materials. The company has successfully developed a series of powder materials (including oxides, carbides, nitrides, single metals, etc.), high-purity targets, functional ceramics and structural devices, and can provide OEM services.

More information about Niobium Carbide
Niobium Carbide Properties (Theoretical)
Compound FormulaNbC
Molecular Weight104.92
AppearanceGray Black Powder
Melting Point3490℃
Boiling PointN/A
Density7.82 g/cm3
Solubility in H2OInsoluble
Exact Mass105.914223
Niobium Carbide Health & Safety Information
Signal WordN/A
Hazard StatementsN/A
Hazard CodesN/A
Risk CodesN/A
Safety StatementsN/A
Transport InformationN/A


The main application of titanium diboride TiB2 powder

Overview of titanium diboride TiB2 powder

Titanium diboride TiB2 powder is gray or gray-black and has a hexagonal (AlB2) crystal structure.The melting point is 2980°C and the hardness is high.The oxidation resistance temperature of titanium diboride in the air can reach 1000°C,and it is stable in HCl and HF acid.

{xunruicms_img_title}

Titanium diboride(TiB2)is an extremely hard ceramic with excellent mutation,oxidation stability and wear resistance.Titanium diboride(TiB2)is an extremely hard ceramic,such as for special ballistic armor In application.In addition,unlike most ceramic components,it is conductive.It is also a reasonable electrical conductor,so it can be used in aluminum smelting and can be formed by electrical discharge machining.Titanium diboride TiB2 powder Performance:1.High melting point 2.High hardness 3.Wear resistance 4.Acid resistance 5.Excellent electrical conductivity 6.High thermal conductivity.

Titanium boride (TiB2) is the most stable compound of boron and titanium. It has a C32 structure and is combined in the form of valence bonds. It is a metalloid compound of the hexagonal crystal system. The structural parameters of the complete crystal are: a is 0.3028nm and C is 0.3228nm. In the crystal structure, the boron atom plane and the titanium atom plane alternately form a two-dimensional network structure, in which B is covalently bonded with the other three Bs, and an extra electron forms a large π bond. This graphite-like layered structure of boron atoms and Ti outer layer electrons determine the good conductivity and metallic luster of TiB2, and the Ti-B bond between the boron atomic surface and the titanium atomic surface determines the high hardness of this material And brittleness.

Titanium boride (TiB2) used in many compounds, metal borides have better high temperature performance than metal carbides. For example, diboride (TiB2) cermet products are more suitable than titanium carbide (TiC) and tungsten carbide (WC) cermet products Use under high temperature and high corrosive working conditions. Titanium diboride powder is gray (or gray-black). It ranks sixth among the top ten materials with the highest melting point in the world, and its anti-oxidation temperature in the air can reach 1100°C. As a new type of ceramic material, it has very Excellent physical and chemical properties, in addition to the high melting point, the hardness is also large, and the chemical stability, electrical and thermal conductivity, and mechanical and mechanical properties at high temperatures are extremely excellent.

Titanium diboride TiB2 powder application

Titanium diboride TiB2 powder is mainly used to prepare composite ceramic products.Because it has the ability to resist molten metal corrosion,it can be used to manufacture molten metal crucibles and electrolytic cell electrodes.Titanium diboride(TiB2)is a hard material,It has high strength and high wear resistance,high density,coupled with high elastic modulus and high compressive strength,so it has to be used for armor parts.It is not affected by most chemical reagents,and has excellent stability and wettability in liquid metals such as zinc and aluminum.This and its high electrical conductivity lead to its use in Hall-Elliott electrolysis cells for aluminum Production.TiB2 is also used as a crucible for molten metals due to its high hardness,extremely high melting point and chemical inertness,and is a candidate material for many applications.

Ballistic armor:The combination of high hardness and medium strength makes it attractive for ballistic armor.However,its relatively high density and difficult processing of molded parts make it less attractive than other ceramics.

Aluminum smelting:The chemical inertness and good electrical conductivity of TiB2 make it the cathode of Hall-Herlot batteries for primary aluminum smelting.It can also be used as a crucible and metal evaporation boat for processing molten metal.

Other uses:high hardness,medium strength and good wear resistance make titanium diboride a candidate material for sealing parts with other materials and cutting tools,vulnerable parts and composite materials.TiB2 is used in combination with other major oxide ceramics to form composite materials,where the presence of the material helps to improve the strength and fracture toughness of the matrix.

The current uses of Titanium diboride TiB2 are almost limited to special applications in the fields of impact-resistant armor,cutting tools,crucibles,neutron absorbers and wear-resistant coatings.

Titanium diboride TiB2 is widely used as a vaporizer for vaporizing aluminum.For the aluminum industry,due to its implantability,low solubility in molten aluminum and good electrical conductivity,it is a selective material that can be used in casting aluminum alloys Used as an inoculant for grain refinement.

Titanium diboride TiB2 film can be used to provide wear resistance and corrosion resistance to cheap or strong substrates.The dispersibility and use effect of titanium diboride TiB2 powder.Therefore,titanium diboride TiB2 powder should be sealed in a vacuum package and stored in a cool and dry room.Titanium diboride TiB2 powder should not be exposed to the air.In addition,it should Avoid using titanium diboride TiB2 powder under pressure.

Titanium diboride TiB2 powder price

The price of titanium diboride TiB2 powder will vary randomly with the production cost, transportation cost, international situation, exchange rate and market supply and demand of  titanium diboride TiB2 powder. Tanki New Materials Co.,Ltd aims to help all industries and chemical wholesalers find high-quality, low-cost nanomaterials and chemicals by providing a full set of customized services. If you are looking for titanium diboride TiB2 powder, please feel free to send to get the latest titanium diboride TiB2 powder prices.

Suppliers of titanium diboride TiB2 powder

As a global titanium diboride TiB2 powder supplier,Tanki New Materials Co.,Ltd has extensive experience in the performance,application and cost-effective manufacturing of advanced and engineered materials.The company has successfully developed a series of powder materials (including oxide,Carbides,nitrides,single metals,etc.),high-purity targets,functional ceramics and structural devices,and provide OEM services.

Titanium Boride Properties
Other NamesTiB2, TiB2 powder, titanium boride powder
CAS No.12045-63-5
Compound FormulaTiB2
Molecular Weight69.489
AppearanceGray Powder
Melting Point2980 °C
Boiling PointN/A
Density4.52 g/cm3
Solubility in H2ON/A
Thermal Expansion Coefficient8.1×10-6m/m.k
Thermal Conductivity25J/m.s.k
Electrical Resistivity14.4μΩ.cm
Exact Mass69.96656 Da
Titanium Boride Health & Safety Information
Signal WordWarning
Hazard StatementsH302-H312-H332
Hazard CodesXn
Risk Codes20/21/22
Safety Statements36
RTECS NumberN/A
Transport InformationN/A
WGK Germany3


How is lithium 12-hydroxystearate produced?

John Albanese, leader of the Australian Labor Party, was sworn in as Australia's new prime minister. After his victory, Albanese said he would "make a big change" in the country's climate policy.  

"We now have an opportunity to end the 'climate wars' in Australia," he said.  "Australian businesses understand that doing the right thing on climate is good for our economy and good for jobs, and I hope Australia will join the global effort on climate change," Albanese said Australia would engage with other countries to change policies when it came to tackling climate change.  

In addition, Albanese’s Labor Party has proposed a more ambitious plan to cut emissions by 43 percent from 2005 levels by 2030, the report said. However, Labor is not currently planning to phase out coal use or halt new coal mining projects.  

The climate issue was a major concern of voters in Australia's general election. Mr. Morrison, the former prime minister, was criticized for failing to direct the response to repeated bushfires in 2019 and 2020.

SBS has reported that According to the latest Climate Change Performance Index of 64 countries released at the 2021 United Nations Climate Change Conference (COP26), Australia's climate policy ranks at the bottom of all countries, and is one of the world's worst performers in three aspects of emissions, renewable energy, and energy use.  Australia ranks 52nd in renewable energy, 54th in energy use, and 56th in emissions.  

It is predicted that the prices of many other commodities like the Lithium 12-Hydroxystearate Lithium,Application of lithium 12-hydroxystearate lithium grease,Lithium 12-Hydroxystearate Lithium Grease Supplier,Overview of Lithium 12-Hydroxystearate Lithium Grease,12-Hydroxy lithium stearate lithium base grease price would increase in the next few days.

Overview of Lithium 12-Hydroxystearate Lithium Grease

Lithium greases are made from natural fatty acid (stearic acid or 12-hydroxystearic acid) lithium soaps, thickened medium viscosity mineral oils or synthetic oils, while synthetic lithium greases are made from synthetic fatty acid lithium soaps , Thickened medium-viscosity mineral oil.

How is lithium 12-hydroxystearate produced?

To produce lithium 12-hydroxystearate, lithium hydroxide and fatty acid are mixed in an aqueous medium. With vigorous stirring, dilute lithium hydroxide monohydrate was gradually added to the fatty acid dispersion in water heated to just below boiling point. Since these lithium soaps are difficult to filter, they are collected by spray drying. In terms of application, lithium 12-hydroxystearate is usually dispersed in synthetic oils such as silicone oil and ester oil. Synthetic oils are favored for their higher stability and performance at extreme temperatures.

 12-Hydroxystearic acid is produced by hydrogenation of castor oil. Dehydration and reduction of the hydroxyl group results in stearic acid after most of the primary reaction with double bond saturation. Hydrogenated castor oil produces a mixture of 12-hydroxystearic acid and stearic acid.

{xunruicms_img_title}

Application of lithium 12-hydroxystearate lithium grease

Lithium 12-hydroxystearate grease is widely used as lubricating oil, stabilizer, decolorizer and thickener. Lithium-based greases: especially those thickened with lithium 12-hydroxystearate soap. After adding antioxidants, rust inhibitors and extreme pressure agents, it becomes a multi-purpose grease. Alternative long-life general purpose greases calcium and sodium based greases are used for bearing lubrication of aircraft, automobiles, tanks, machine tools and various mechanical equipment.

Lithium 12-hydroxystearate is a fatty acid salt commonly known as "lithium soap" and is most commonly used to stabilize and thicken soap oils. Lithium is generally preferred over soaps containing other counter ions such as sodium, calcium and barium.

12-Hydroxy lithium stearate lithium base grease price

The price of lithium 12-hydroxystearate lithium-based grease will vary randomly with the production cost, transportation cost, international situation and market supply and demand of 12-hydroxy lithium-based lithium-based grease. Tanki New Materials Co.,Ltd aims to help various industries and chemical wholesalers find high-quality, low-cost nanomaterials and chemicals by providing a full range of customized services. If you are looking for Lithium 12-Hydroxystearate Grease, please feel free to send an inquiry for the latest price Lithium 12-Hydroxystearate Lithium Grease.

Lithium 12-Hydroxystearate Lithium Grease Supplier

As a global supplier of lithium 12-hydroxystearate, Tanki New Materials Co., Ltd. has extensive experience in the performance, application and cost-effective manufacturing of advanced engineered materials. The company has successfully developed a series of powder materials (molybdenum disulfide MoS2, tungsten disulfide WS2, boron nitride BN, boron nitride), high-purity target materials, functional ceramics and structural devices, and provides OEM services.

Properties of Lithium 12-Hydroxystearate

Compound Formula

C18H35LiO3

CAS  No.

7620-77-1

EC No.

231-536-5

Molecular Weight

306.4

Melting Point

220℃

Exact Mass

306.27 g/mol

Solubility in H2O

Slightly soluble

Monoisotopic Mass

306.27 g/mol


The Japanese minister of Economy, Trade, and Industry recently held talks with the U.S. Secretary of Commerce and industry in Washington, where he is visiting, and agreed to include basic principles on joint research and development of semiconductors and strengthening of supply chains.  Japan's economy, Trade and Industry Minister has asked the United States to increase the Lithium 12-Hydroxystearate Lithium,Application of lithium 12-hydroxystearate lithium grease,Lithium 12-Hydroxystearate Lithium Grease Supplier,Overview of Lithium 12-Hydroxystearate Lithium Grease,12-Hydroxy lithium stearate lithium base grease price will continue to increase in the future.

What is the scope of application of boron nitride?

According to data released by the International Nickel Research Organization (INSG), the global nickel market supply surplus widened to 20500 tons in June 2022, compared with a revised surplus of 19500 tons in May. From January to June 2022, the global nickel market had a surplus of 30800 tons, compared with a shortage of 125500 tons in the same period last year.


Indonesia's president says the world's largest nickel producer is likely to tax nickel exports this year with a view to keeping more refining work at home.


Italy's ANSA news agency recently quoted European Natural Gas inventory (AGSI+) data as saying that as of August 16, Italy's natural gas reserves reached 78.19% of the highest reserves, 151.26 terawatt hours (about 1.62 billion cubic meters), ranking second in the European Union after Germany.


According to reports, the Japanese iron company East Japan Iron Institute recently admitted that the company's Chiba Junjin iron plant detected excessive cyanide as early as February 2019, but concealed the data and discharged toxic substances into the river as many as 39 times. The Chiba prefecture government has launched an investigation into the matter.

Because of the turbulent international situation, the supply and prices of many international bulk Boron nitride,Overview of boron nitride,Application of boron nitride,The price of boron nitride,Suppliers of Boron Nitride are still very uncertain.

Overview of boron nitride

Boron nitride industrial powder is a pure white ceramic material with a hexagonal crystal structure similar to graphite.Boron nitride can withstand temperatures exceeding 2,000°C,and depending on the grade,its dielectric strength is close to 1000 volts/mil.Boron nitride is hot-pressed in the form of billets,which can be easily processed into rods, bars,plates and even customized shapes.

{xunruicms_img_title}

Application of boron nitride

1.Release agent for metal forming and lubricant for metal drawing.

2.Special electrolysis and resistance materials in high temperature state.

3.High-temperature solid lubricants,extrusion anti-wear additives,additives for the production of ceramic composite materials,refractory materials and antioxidant additives,especially in the case of corrosion resistance of molten metals,heat-enhanced additives,high-temperature insulation materials.

4.Heat-sealing desiccant for transistors and additives for polymers such as plastic resins.

5.Pressed into various shapes of boron nitride products,which can be used as high temperature,high pressure,insulation and heat dissipation parts.

6.Thermal shielding materials in aerospace.

7.With the participation of catalysts,it can be converted into cubic boron nitride that is as hard as diamond after high temperature and high pressure treatment.

8.The structural materials of the atomic reactor.

9.Aircraft,rocket engine nozzle.

10.Insulator for high-voltage and high-frequency electricity and plasma arc.

11.Packaging materials to prevent neutron radiation.

12.The superhard material made by boron nitride processing can be made into high-speed cutting tools and drill bits for geological exploration and oil drilling.

13.Separation ring for continuous cast steel in metallurgy,flow slot for amorphous iron, release agent for continuous cast aluminum(various optical glass release agents)

14.Make all kinds of evaporation boats for capacitor film aluminum plating,picture tube aluminum plating,display aluminum plating, etc.

15.Various fresh-keeping aluminum-plated packaging bags,etc.

16.All kinds of laser anti-counterfeiting aluminum plating,brand hot stamping materials,all kinds of cigarette labels,beer labels,packaging boxes,cigarette packaging boxes,etc.

17.The filler used in cosmetics for lipstick is non-toxic,lubricating and shiny.

In terms of optical applications,due to the high hardness of the c-BN film and the high transmittance of the entire wavelength range from ultraviolet(from about 200 nm)to far infrared,it is suitable as a surface coating for some optical components, and is particularly suitable as Coating of window materials such as zinc selenide(ZnSe)and zinc sulfide(ZnS).In addition,it has good thermal shock resistance and hardness,and is expected to become an ideal window material for high-power lasers and detectors.

The price of boron nitride

The price of boron nitride will vary randomly with the production cost, transportation cost, international situation, exchange rate and supply and demand of boron nitride market. Tanki New Materials Co., Ltd. aims to help various industries and chemical wholesalers find high-quality, low-cost nanomaterials and chemicals by providing a full set of customized services. If you are looking for boron nitride, please feel free to send an inquiry to get the latest price of boron nitride.

Suppliers of Boron Nitride

As a global boron nitride supplier,Tanki New Materials Co.,Ltd has extensive experience in the performance, application and cost-effective manufacturing of advanced and engineered materials.The company has successfully developed a series of powder materials(titanium nitride,nitride Silicon,titanium nitride,etc.)high-purity targets,functional ceramics and structural devices, and provide OEM services.

Boron Nitride Properties
Other NamesBoron nitride
CAS No.10043-11-5
Compound FormulaBN
Molecular Weight24.82
AppearanceColorless crystals
Melting Point2973 °C
Boiling PointN/A
Density2.1 g/cm3
Solubility in H2Oinsoluble
Electrical Resistivity13 to 15 10x Ω-m
Poisson's Ratio0.1
Specific Heat840 to 1610 J/kg-K
Thermal Conductivity29 to 96 W/m-K
Thermal Expansion0.54 to 18 µm/m-K
Young's Modulus14-60 GPa
Exact Mass25.0124
Monoisotopic Mass25.0124
Boron Nitride Health & Safety Information
Signal WordWarning
Hazard StatementsH319-H335
Hazard CodesXi
Risk Codes36/37
Safety Statements26-36
RTECS NumberED7800000
Transport InformationN/A
WGK Germany3


A spokesman for the Turkish presidential palace recently: the Black Sea Grain Export Joint Coordination Center may soon complete the final work of Ukraine's grain export route. The first ships carrying Ukrainian grain are expected to leave Ukraine's Black Sea port of Odessa on August 1 and re-export food to the international market. The grain ship will arrive in Istanbul, Turkey, as early as August 3, and then go to African countries.

Ukraine and Russia are both big grain exporters, among which Ukraine is known as the "granary of Europe". After the conflict between Russia and Ukraine broke out in February this year, grain exports of both countries were disrupted. The Ukrainian side accused the Russian army of blocking the Black Sea port on the Ukrainian side, resulting in more than 20 million tons of grain stranded in the port and unable to be transported by sea. The Russian side refutes this claim, accusing the Ukrainian side of laying a large number of mines in the waters near the port of the Black Sea, endangering navigation safety.

After coordination, Turkey, Russia, Ukraine and the United Nations Quartet signed an agreement in Istanbul on July 22 aimed at reopening blocked Black Sea transport routes. Ships carrying food can safely travel to and from three ports in southern Ukraine so that the stranded food of Ukraine can be transported to the international market. Russia and Ukraine agreed that neither side would attack ships carrying agricultural Boron nitride,Overview of boron nitride,Application of boron nitride,The price of boron nitride,Suppliers of Boron Nitride are still very uncertain.

Application Fields of 316L Stainless Steel Powder

Stainless Steel Powder 316L - Application Fields

316L Stainless Steel Powder This metal powder is used widely in many fields because of its outstanding corrosion resistance. Here is a detailed guide to using 316L stainless-steel powder in various fields.

1. Aerospace field

In the aerospace industry, 316L stainless powder is widely used for high-strength, corrosion-resistant components. The 316L stainless powder's excellent high-temperature resistance and oxidation resistance allows it to maintain stable performance even in harsh environments like high temperature, pressure, and speed. It ensures safe and reliable aircraft operation. 316L stainless powder can be used to produce high-temperature jet engine components, such as combustion chambers, turbine blades, etc. that can withstand up to 600°C and high pressure airflow.

Additionally, 316L powder is used for manufacturing structural components of high strength in aerospace vehicles. These include beams and frames. Due to the excellent processing and weld performance, it is easily processed into various structural components, which ensure their dimensional stability and accuracy.

2. Petrochemical Industry

316L stainless powder is widely used in the petrochemical industries to make high-strength, corrosion-resistant pipelines and equipment. The 316L stainless steel powder has excellent corrosion resistance and can resist various chemical substances. This ensures the long-term stability of the equipment. In the manufacturing of petrochemical machinery, 316L stainless powder is used for high-temperature high-pressure pipelines and containers. This can withstand corrosion from various chemicals, while ensuring its strength and sealing.

Additionally, 316L stainless powder is used for manufacturing filters, separators, catalyst carriers, and other components within the petrochemical industry. Its high-temperature and corrosion-resistant properties can help ensure that equipment will operate reliably for a long time and increase production efficiency.

3. Medical field

316L stainless-steel powder is used widely in the medical field to produce high-quality implants and medical devices. Its non-toxic, harmless, and biocompatible effects on human bodies, along with its high biocompatibility can guarantee the stability and safety of a product for a long time. This is why it's widely used to make medical devices and human implants. In manufacturing artificial joints and prostheses as well as other implants, 316L Stainless Steel Powder is used for support structures and connectors. It ensures strength and stability as well as corrosion and wear resistance.

In the medical field, 316L powder is used for manufacturing high-quality surgical tools, medical devices and other products. The good welding and processing performance of 316L stainless steel powder allows for the manufacture of complex-shaped devices, improving reliability and safety.

4. Industrial sector

In the industry, 316L stainless powder is widely used for manufacturing high-strength corrosion-resistant equipment and components. You can use it to make high-quality mechanical elements such as bolts, springs, bearings and chemical equipment. The excellent corrosion resistance and anti-oxidant performance of this material can help to ensure that the equipment will operate smoothly for a long time and increase production efficiency.

The power and electronic industries are also major users of 316L powder. 316L stainless powder can be used in the production of batteries and electronic components to produce components such as brackets, shells and terminals. These components improve product quality and safety.

Summary: 316L stainless-steel powder has many uses in various fields.

About KMPASS

KMPASS is a global supplier and manufacturer of high-quality nanomaterials, chemicals, and other materials. We have over 12 year experience. The company export to many countries, such as USA, Canada, Europe, UAE, South Africa, Tanzania,Kenya,Egypt,Nigeria,Cameroon,Uganda,Turkey,Mexico,Azerbaijan,Belgium,Cyprus,Czech Republic, Brazil, Chile, Argentina, Dubai, Japan, Korea, Vietnam, Thailand, Malaysia, Indonesia, Australia,Germany, France, Italy, Portugal etc. KMPASS, a leading manufacturer of nanotechnology products, dominates the market. Our professional team offers perfect solutions to improve the efficiency of different industries, create value and cope with various challenges. Send an email to sales2@nanotrun.com for 316L Powder.

The role of molybdenum in the new energy industry

Molybdenum's role in the New Energy Industry

I. I.

As a result of the recent changes in the global energy market, the energy sector is growing rapidly. The future energy market will include solar energy, biomass, wind, water, and geothermal power. The energy sector of tomorrow will be a major player in molybdenum because it is rare. This article will examine the characteristics, principles, and application areas for molybdenum so that you can understand the importance of this element in the current energy industry.

2. Property of molybdenum

Molybdenum has high melting, boiling and strength properties, as well as corrosion resistance. It is relatively stable in chemical properties and is not soluble in water, acids, alkalis, or other solvents. The molybdenum dioxide has excellent thermal and electrical stability. This makes it an important component of the new Energy Industry.


3. Molybdenum's role in the New Energy Industry

solar industry

The solar industry is a sector that converts and uses solar energy. Molybdenum compounds and their derivatives play a major role in the Solar Industry.


(1) Photovoltaic Material: The molybdenum material is a good photovoltaic because it has high conversion efficiency. Molybdenum can be added to solar cells in small amounts to improve their photoelectric conversion and lifetime.


Molybdenum can be used in high-temperature equipment like solar collectors, solar boilers and other high-temperature devices to increase the thermal efficiency.

Wind Energy Industry


Wind energy is an industry that converts and uses wind power for energy conversion. Molybdenum compounds and molybdenum play important roles in wind energy.


(1) Wind turbines. Molybdenum, and its alloys, have excellent strength and corrosion resistance properties. They can be used for key components like blades and main shafts in wind turbines. This will improve the safety and service life of the equipment.


(2) Lubricants. Molybdenum compounds and their compounds are excellent lubricants and can reduce the friction loss of wind turbines and equipment failure rates.


Hydropower industry

Hydropower refers to an industry that uses water energy as a source of energy. Molybdenum compounds and molybdenum play important roles in hydropower.

Hydrogenerator unit (1): Molybdenum can be used for key components like blades and main shafts to improve service life and safety.


Fluid accessories. Molybdenum compounds and their alloys have excellent fluidity, corrosion resistance, and can be used in fluid accessories to improve fluid efficiency and durability for hydroelectric generator sets.


Geothermal Energy Industry

Geothermal energy is an industry that uses the geothermal heat to convert and utilize energy. Molybdenum compounds and molybdenum play important roles in geothermal energy.

(1) Geothermal equipment: Molybdenum can be used in the manufacture of key components, such as heat-exchangers and boilers for geothermal equipment to improve thermal stability and efficiency.


Molybdenum can be used for the production of components like heat exchangers, pipes and other geothermal equipment. This will improve thermal efficiency.

Biomass Energy Industry

The biomass energy industry uses biomass energy to convert and utilize energy. Molybdenum compounds and molybdenum play important roles in the bioenergy industry.


Molybdenum can be used for the production of boilers and burners in biomass combustion equipment. This will improve their thermal stability and efficiency.


Molybdenum is a good catalyst and can be used in the production of biofuels to increase yield and quality.


4. Molybdenum applications in the new energy sector

Solar power generation. Molybdenum has a major role to play in the solar cell and is an important material for solar energy generation systems.

Molybdenum has a significant role to play in wind power generation.

Molybdenum has a vital role to play in the hydroelectric generation of power. It is one key material used in these systems.

Molybdenum has a major role to play in geothermal equipment. It is also a critical material for the systems that generate geothermal electricity.

Molybdenum has a vital role to play in the production of biofuels and in the combustion equipment used for biomass.


5. Molybdenum in the new energy sector

Molybdenum demand will increase with the rapid development in the new energy industry. Gleichzeitig, due to the rapid development of technology and cost reduction, the use of molybdenum within the new energy industry is set to increase. Molybdenum's application in the new energy sector will expand further, contributing to the growth of green power.

Application Fields of Nickel Based Alloys

Nickel Based Alloys are used in a wide range of applications

Nickel-based alloy Based on nickel, it is made of a variety of alloying materials. It is used for its high-temperature properties, corrosion resistance and oxidation resistant as well as mechanical properties in the aviation, aerospace and petrochemical industries. This article will give a detailed description of the Applications of nickel-based alloys in a variety fields including aerospace, power, energy, biomedical as well as other fields. It also provides references for research in these fields.

Applications of nickel-based alloys to the aerospace industry

The aerospace sector is one of many important applications of Nickel-based alloys These are the main components used in aerospace to produce high-performance products like aircraft, rockets and satellites.

Aircraft engine components

Aircraft engines include:

* The main equipment used in the aviation industry.

* Material with outstanding high-temperature resistance is required.

* Corrosion resistant.

* Mechanical properties

Nickel-based metals exhibit excellent strength at high temperatures, as well as creep and fatigue resistance. The alloys are widely used for aircraft engine parts, including turbine blades and discs.

Rocket engine components

Rocket engines are key equipment in the launch of satellites and space probes. They require materials with extreme high-temperature strengths and corrosion resistance. Nickel-based alloys In the manufacture of rocket engines are commonly used key components like combustion chambers. nozzles and turbine disks.

Satellite structural components

Satellites' structural components need materials with high temperature resistance, corrosion resistance and dimensional stabilities. Many structural components, including solar panels and structural frame frames, are manufactured using nickel-based materials.

Use of nickel-based alloys for the petrochemical Industry

The petrochemical industries is another area where nickel-based materials are used. Nickel-based alloys are mainly used in the manufacture of key equipment, such as high temperature and high pressure reactors and pipes, for the petrochemical industries.

High-temperature reactor

High-temperature Reactors are:

* The core equipment of the petrochemical industries.

* Material with outstanding high-temperature resistance is required.

* Corrosion resistant.

* Mechanical properties

Alloys based on nickel have excellent mechanical, corrosion and high-temperature properties. High-temperature reactors like hydrogenation reactors or reforming reactors are made with these alloys.

High-pressure pipeline

In the petrochemical industries, high-pressure pipes are essential equipment. Materials with excellent corrosion resistance, high-pressure resistance and mechanical properties are required. Nickel-based materials are widely used for high-pressure pipe manufacturing because of their excellent high-pressure resistance, corrosion resistance and mechanical properties.

Applications of nickel-based materials in the field power energy

The electric energy sector is another area where nickel-based materials are used. These alloys are used primarily to manufacture high-temperature heat-exchangers and gas-turbines.

High-temperature heat exchanger

The high-temperature heat-exchangers in the power and energy industry are essential equipment. Materials with excellent resistance to corrosion, as well as mechanical properties, are required. Nickel-based materials have excellent mechanical, corrosion-resistant, and high-temperature properties. The alloys are widely used for high-temperature exchangers like air preheaters or flue gas exchangers found in coal-fired electricity stations.

Gas turbine blades

Gas turbines can be:

* Equipment for energy conversion and electricity generation.

* Material with outstanding high-temperature resistance is required.

* Corrosion resistant.

* Mechanical properties

In the manufacture of gas turbines such as blades or key components, nickel-based materials are used widely.

Applications of nickel-based alloys to biomedicine

Biomedical applications are another important area for nickel-based metals. These alloys are used to manufacture medical devices like artificial joints and vascular scaffolds.

Artificial joint

Artificial joints can be:

* Medical devices that replace diseased joints.

* Requires materials with excellent corrosion resistance.

* Biocompatibility.

* Mechanical properties

Alloys based on nickel have excellent corrosion resistance and biocompatibility. They are also used to manufacture artificial joints.

Vascular stent

Materials with outstanding corrosion resistance and biocompatibility are required for vascular stents. Nickel-based materials are highly corrosion resistant, biocompatible, and flexible and are widely used for vascular devices.

As a summary, nickel-based materials have been extensively used in the fields of aerospace, petrochemicals power energy and biomedicine. In the future, with the continued development of technology and the use of nickel-based materials, they will become more widely used, contributing to industrial and technological development.

About KMPASS

KMPASS is a global chemical supplier & manufacturer that has over 12 year experience in providing high-quality Nanomaterials and chemicals. The company export to many countries, such as USA, Canada, Europe, UAE, South Africa, Tanzania,Kenya,Egypt,Nigeria,Cameroon,Uganda,Turkey,Mexico,Azerbaijan,Belgium,Cyprus,Czech Republic, Brazil, Chile, Argentina, Dubai, Japan, Korea, Vietnam, Thailand, Malaysia, Indonesia, Australia,Germany, France, Italy, Portugal etc. KMPASS, a leader of nanotechnology manufacturing, dominates the market. Our expert team offers solutions to enhance the efficiency of different industries, create value and overcome various challenges. You can contact us at sales2@nanotrun.com for Inonel 718 Powder.

CLC blocks and foamed concrete lead the reform of the construction industry

CLC Blocks and foamed Concrete, two new energy-saving materials, are leading the construction industry reform.

As environmental awareness continues to improve, the construction industry is now focusing on more energy-saving and environmentally friendly building materials.

The construction industry has been gradually adopting CLC block as an environmentally friendly, energy efficient, and durable wall material.

CLC block It is an energy-saving material for walls made from fly ash, cement, river sand and other raw ingredients.

Its characteristics include high strength, lightweight, thermal insulation, heat insulation, sound isolation, easy and efficient construction and long service life.

Compare with the traditional clay brick CLC block It has many benefits.

CLC blocks reduce pollution and production costs by using a variety of raw materials. These include cement, slag, and other industrial wastes as well as natural materials like river sand.

The CLC block is also light and strong, which allows it to reduce the weight and improve the performance of the structure.

CLC blocks have excellent thermal insulation as well as sound insulation and thermal resistance, which can help to improve the performance and comfort of buildings.

Construction of CLC blocks can be done quickly and easily, which will greatly reduce construction time.

A new wall material, foam concrete, has also attracted a lot of attention.

The building material is lightweight, strong, and thermally and acoustically insulating. It's made up of raw materials, such as foaming agent, cement and foam agent.

In comparison with traditional concrete, the foam concrete not only has a better thermal insulation and sound insulation, but can also reduce self-weight.

Foamed concrete is made from cement and foaming agent. The foam structure of the concrete is then formed through mixing and foaming.

This foam structure is able to make concrete lighter and soundproof. It can also insulate heat.

The foam concrete can also meet the needs of building structures in terms load-bearing and service life.

New wall materials have a wide range of applications in the construction industry. CLC block The foam concrete range is quite broad.

You can use them for the exterior and interior walls as well as thermal and sound insulation.

These materials also have characteristics that are compatible with the current trend in the construction industry, such as a simple production process, low costs, and good environmental performance.

The construction industry is gradually becoming more interested in and favoring the new wall materials CLC Block and foam concrete due to their outstanding performance and extensive application potential.

It is expected that, in the future, due to the development of science and technologies, these materials will become more important and play a greater role in the building industry. They are also believed to promote a greener construction industry.

How is Niobium Carbide NbC powder produced?

The main application of titanium diboride TiB2 powder

How is lithium 12-hydroxystearate produced?

What is the scope of application of boron nitride?

High Purity Iron powder Fe Powder CAS 7439-89-6, 99%

High Purity Tin Sn Powder CAS 7440-31-5,99%

High Purity Nano Ag Silver powder cas 7440-22-4, 99%

Preparation method of tungsten boride

High Purity Molybdenum Powder Mo Powder CAS 7439-98-7, 99.9%

Overview and Application of Chromium Carbide Cr3C2 Powder

High Purity Colloidal Silver Nano Silver Solution CAS 7440-22-4

Is Molybdenum Disilicide a Dangerous Good?

High Purity Silicon Si powder CAS 7440-21-3, 99%

High Purity Tungsten Carbide WC Powder Cas 12070-12-1, 99%

High Purity 3D Printing Inconel 625 Powder

The production process of chromium carbide

Application of Nanometer Iron Oxide Fe3O4 Powder

High Purity Spherical Graphite C Powder CAS 7782-42-5, 99.9%

Overview and wide application of molybdenum disulfide

Properties of cuprous oxide Cu2O powder

Newsarchitecturetable is a trusted global chemical material supplier & manufacturer with over 12 years experience in providing super high quality chemicals and Nano materials such as graphite powder, boron powder , zinc sulfide , nitride powder, Calcium nitride, Ca3N2, 3D printing powder, and so on.


And our innovative, high-performance materials are widely used in all aspects of daily life, including but not limited to the automotive, electrical, electronics, information technology, petrochemical, oil, ceramics, paint, metallurgy, solar energy, and catalysis. Our main product list as following:

Metal and alloy powder: boron, nickel, silicon, copper, iron, aluminum. chrome, silver

Boride powder: magnesium boride, aluminum boride, boron nitride, boron carbide, hafnium boride;

Sulfide powder: Molybdenum sulfide, zinc sulfide, bismuth sulfide;

Oxide powder: ITO, ATO, iron oxide, titanium oxide, manganese oxide, copper oxide;about.jpg

Carbide powder: titanium carbide, manganese carbide, titanium carbonitride, hafnium carbide;

Nitride powder: Aluminum nitride, hafnium nitride, magnesium nitride, vanadium nitride;

Silicide powder: hafnium silicide, molybdenum silicide, tantalum silicide;

Hydride powder: Hafnium hydride, vanadium hydride, titanium hydride, zirconium hydride.etc.

Have any questions or needs, please feel free to contact Newsarchitecturetable.